Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 24(11): 10005-10017, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27696198

RESUMO

The thermodynamic of the adsorption of seven organic pollutants, namely benzotriazol, bisphenol A, caffeine, carbamazepine, diclofenac, ofloxacin, and pentachlorophenol, was studied on a microporous-activated carbon fabric. The isosteric adsorption quantities (Gibbs energy, enthalpy, and entropy variations) at high coverage ratio (around 1 mmol/g) have been determined from the adsorption isotherms at three temperatures (13, 25, and 40 °C). The adsorption heats at very low coverage (about 10-5 mmol/g) have been measured by flow micro calorimetry. The experimental adsorption energies were correlated to the adsorbate-adsorbent and the adsorbate-solvent interaction energies calculated by simulations using the COSMO-RS model. The main role of the van der Waals forces in the adsorption of the studied molecules was established. The bulkier the adsorbate is, the lower the adsorption Gibbs energy variation at high coverage deduced from the isotherms. The heterogeneity of the adsorption sites was brought out by calorimetric measurements. At high coverage, a physisorption phenomenon was observed. At very low coverage, high values of the adsorption heats were found (ranging from -58 to -110 kJ/mol), except for pentachlorophenol characterized by an athermal adsorption controlled by Pi-anions interactions.


Assuntos
Carvão Vegetal/química , Termodinâmica , Adsorção , Calorimetria , Têxteis
2.
ACS Catal ; 7(6): 3916-3923, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-29930880

RESUMO

Bilirubin oxidases (BODs) belong to the multi-copper oxidase (MCO) family and efficiently reduce O2 at neutral pH and in physiological conditions where chloride concentrations are over 100 mM. BODs were consequently considered to be Cl- resistant contrary to laccases. However, there has not been a detailed study on the related effect of chloride and pH on the redox state of immobilized BODs. Here, we investigate by electrochemistry the catalytic mechanism of O2 reduction by the thermostable Bacillus pumilus BOD immobilized on carbon nanofibers in the presence of NaCl. The addition of chloride results in the formation of a redox state of the enzyme, previously observed for different BODs and laccases, which is only active after a reductive step. This behavior has not been previously investigated. We show for the first time that the kinetics of formation of this state is strongly dependent on pH, temperature, Cl- concentration and on the applied redox potential. UV-visible spectroscopy allows us to correlate the inhibition process by chloride with the formation of the alternative resting form of the enzyme. We demonstrate that O2 is not required for its formation and show that the application of an oxidative potential is sufficient. In addition, our results suggest that the reactivation may proceed thought the T3 ß.

3.
Environ Sci Pollut Res Int ; 23(1): 128-38, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26018287

RESUMO

In order to understand the interactions between beta-hexachlorocyclohexane (HCH) and chemical groups at activated carbon (AC) surface, the solid samples were hydrogenated aiming to decrease the amounts of oxygenated groups. Two AC samples designated by BagH2O and BagP1.5 were prepared by water vapor activation and phosphoric acid activation, respectively, of sugarcane bagasse used as an AC precursor. A more simple molecule 1,2,3-trichloropropane (TCP) is used as a model of chlorinated compound. The AC were characterized by infrared, X-ray photoelectron spectroscopy (XPS), Raman resonance spectroscopies, as well as temperature-programmed desorption coupled with mass spectrometry (TPD-MS). BagP1.5 and BagH2O AC surface contained oxygenated groups. Upon hydrogenation, a decrease of most of these group amxounts was observed for both samples, while hydroxyl groups increased. On the basis of temperature-programmed desorption data obtained for AC samples contaminated with TCP or HCH, it was possible to determine the type of hydrogen bond formed between each AC and HCH.


Assuntos
Hexaclorocicloexano/química , Adsorção , Celulose , Carvão Vegetal/química , Ligação de Hidrogênio , Espectroscopia Fotoeletrônica , Propano/análogos & derivados , Propano/química , Temperatura
4.
Anal Chem ; 87(2): 843-7, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25521946

RESUMO

Solid state NMR methods are required to analyze biomass as a function of its chemical or biological treatment for biofuels, chemicals, or biochar production. The native polymers network in lignocellulosic biomass and other solid materials, such as coal, coke, or biochar, can hardly be analyzed by liquid state NMR due to their poor swelling ability without chemical modification. A (1)H-(13)C two-dimensional heteronuclear correlation (HETCOR) experiment with frequency-switched Lee-Goldburg (FSLG) irradiation is performed on a high field spectrometer (750 MHz). This method leads to previously unattained resolution for biomass and biochar and offers a unique ability to reveal their chemical composition. The formation of aromatic moieties from carbohydrates and lignin thermal conversion is clearly distinguished. This method can be applied to all other carbonaceous materials.


Assuntos
Biomassa , Carvão Vegetal/química , Ressonância Magnética Nuclear Biomolecular/métodos , Polímeros/química
5.
ACS Appl Mater Interfaces ; 7(1): 911-20, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25485841

RESUMO

The lifetime of bone implants inside the human body is directly related to their osseointegration. Ideally, future materials should be inspired by human tissues and provide the material structure-function relationship from which synthetic advanced biomimetic materials capable of replacing, repairing, or regenerating human tissues can be produced. This work describes the development of biomimetic thin coatings on titanium implants to improve implant osseointegration. The assembly of an inorganic-organic biomimetic structure by UV laser pulses is reported. The structure consists of a hydroxyapatite (HA) film grown onto a titanium substrate by pulsed-laser deposition (PLD) and activated by a top fibronectin (FN) coating deposited by matrix-assisted pulsed laser evaporation (MAPLE). A pulsed KrF* laser source (λ = 248 nm, τ = 25 ns) was employed at fluences of 7 and 0.7J/cm(2) for HA and FN transfer, respectively. Films approximately 1500 and 450 nm thick were obtained for HA and FN, respectively. A new cryogenic temperature-programmed desorption mass spectrometry analysis method was employed to accurately measure the quantity of immobilized protein. We determined that less than 7 µg FN per cm(2) HA surface is adequate to improve adhesion, spreading, and differentiation of osteoprogenitor cells. We believe that the proposed fabrication method opens the door to combining and immobilizing two or more inorganic and organic materials on a solid substrate in a well-defined manner. The flexibility of this method enables the synthesis of new hybrid materials by simply tailoring the irradiation conditions according to the thermo-physical properties of the starting materials.


Assuntos
Materiais Revestidos Biocompatíveis/química , Fibronectinas/química , Titânio/química , Biomimética , Osso e Ossos/citologia , Adesão Celular , Linhagem Celular , Proliferação de Células , Durapatita/química , Humanos , Lasers , Espectrometria de Massas , Teste de Materiais , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Compostos Orgânicos/química , Osseointegração , Osteoblastos/citologia , Próteses e Implantes , Desenho de Prótese , Ligação Proteica , Regeneração , Espectrofotometria , Células-Tronco/citologia , Propriedades de Superfície , Raios Ultravioleta
6.
Phys Chem Chem Phys ; 16(4): 1366-78, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24296569

RESUMO

The discovery of oxygen and carbon monoxide tolerant [NiFe] hydrogenases was the first necessary step toward the definition of a novel generation of hydrogen fed biofuel cells. The next important milestone is now to identify and overcome bottlenecks limiting the current densities, hence the power densities. In the present work we report for the first time a comprehensive study of herringbone carbon nanofiber mesoporous films as platforms for enhanced biooxidation of hydrogen. The 3D network allows mediatorless hydrogen oxidation by the membrane-bound hydrogenase from the hyperthermophilic bacterium Aquifex aeolicus. We investigate the key physico-chemical parameters that enhance the catalytic efficiency, including surface chemistry and hierarchical porosity of the biohybrid film. We also emphasize that the catalytic current is limited by mass transport inside the mesoporous carbon nanofiber film. Provided hydrogen is supplied inside the carbon film, the combination of the hierarchical porosity of the carbon nanofiber film with the hydrophobicity of the treated carbon material results in very high efficiency of the bioelectrode. By optimization of the whole procedure, current densities as high as 4.5 mA cm(-2) are reached with a turnover frequency of 48 s(-1). This current density is almost 100 times higher than when hydrogenase is simply adsorbed at a bare graphite electrode, and more than 5 times higher than the average of the previous reported current densities at carbon nanotube modified electrodes, suggesting that carbon nanofibers can be efficiently used in future sustainable H2/O2 biofuel cells.


Assuntos
Aquifoliaceae/enzimologia , Fontes de Energia Bioelétrica , Carbono/metabolismo , Hidrogênio/metabolismo , Hidrogenase/metabolismo , Nanofibras/química , Aquifoliaceae/metabolismo , Biocatálise , Carbono/química , Hidrogênio/química , Hidrogenase/química , Oxirredução , Porosidade , Propriedades de Superfície
7.
Anal Chem ; 84(5): 2147-53, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22242697

RESUMO

The analysis of the surface chemistry of carbon materials is of prime importance in numerous applications, but it is still a challenge to identify and quantify the surface functional groups which are present on a given carbon. Temperature programmed desorption with mass spectrometry analysis (TPD-MS) and X-ray photoelectron spectroscopy with an in situ heating device (TPD-XPS) were combined in order to improve the characterization of carbon surface chemistry. TPD-MS analysis allowed the quantitative analysis of the released gases as a function of temperature, while the use of a TPD device inside the XPS setup enabled the determination of the functional groups that remain on the surface at the same temperatures. TPD-MS results were then used to add constraints on the deconvolution of the O1s envelope of the XPS spectra. Furthermore, a better knowledge of the evolution of oxygen functional groups with temperature during a thermal treatment could be obtained. Hence, we show here that the combination of these two methods allows to increase the reliability of the analysis of the surface chemistry of carbon materials.

8.
Phys Chem Chem Phys ; 13(35): 16063-70, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21822505

RESUMO

In this study we attempt to investigate the potential use of two zeolite template carbon (ZTC), EMT-ZTC and FAU-ZTC, to capture CO(2) at room temperature. We report their high pressure CO(2) adsorption isotherms (273 K) that show for FAU-ZTC the highest carbon capture capacity among published carbonaceous materials and competitive data with the best organic and inorganic adsorbing frameworks ever-known (zeolites and mesoporous silicas, COFs and MOFs). The importance of these results is discussed in light of mitigation of CO(2) emissions. In addition to these new experimental CO(2) adsorption data, we also present new insight into the adsorption process of the two structures by Monte Carlo simulations: we propose that two separate effects are responsible for the apparent similarity of the adsorption behaviour of the two structures: (i) pore blocking occurring on EMT-ZTC, and (ii) the change of the carbon polarizability due to the extreme curvature of FAU-ZTC.

9.
Langmuir ; 26(24): 18824-33, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21117633

RESUMO

The objective of this work was to study the adsorption of different oxygenated hydrocarbons (methanol, ethanol, 1 and 2-butanol, methyl acetate) on activated carbons from organic mixtures with cyclohexane. Three activated carbons prepared by thermal and chemical treatments of a commercial carbon were employed for this purpose. Their textural properties were found to be similar, whereas their surface chemistries were modified, as shown by temperature-programmed desorption coupled to mass spectrometry (TPD-MS) and X-ray photoelectron spectroscopy (XPS). The adsorption isotherms were obtained by depletion method, and the analysis of adsorbed species was evaluated by TPD-MS to obtain new insight into the interactions between the different hydrocarbons and the carbon surface. Ethanol leads to a high-energy interaction between its hydroxyl function and the oxygenated surface groups and also to a lower energy interaction between the aliphatic part of the molecule and the carbon material. The desorption activation energy for this hydrophilic interaction is high (50 to 105 kJ/mol), and it is related to the nature of the carbon surface groups. The relative importance of these two interactions depend on the size of the alcohol/methanol is similar to ethanol, whereas butanols lead to more dispersive interactions. Methyl-acetate cannot undergo this kind of strong interaction and behaves like cyclohexane, having desorption activation energies ranging between 25 and 45 kJ/mol no matter the molecule and the carbon surface chemistry.

10.
J Am Chem Soc ; 132(22): 7720-9, 2010 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-20465254

RESUMO

Hydrogen sorption properties of ultrasmall Pd nanoparticles (2.5 nm) embedded in a mesoporous carbon template have been determined and compared to those of the bulk system. Downsizing the Pd particle size introduces significant modifications of the hydrogen sorption properties. The total amount of stored hydrogen is decreased compared to bulk Pd. The hydrogenation of Pd nanoparticles induces a phase transformation from fcc to icosahedral structure, as proven by in situ XRD and EXAFS measurements. This phase transition is not encountered in bulk because the 5-fold symmetry is nontranslational. The kinetics of desorption from hydrogenated Pd nanoparticles is faster than that of bulk, as demonstrated by TDS investigations. Moreover, the presence of Pd nanoparticles embedded in CT strongly affects the desorption from physisorbed hydrogen, which occurs at higher temperature in the hybrid material compared to the pristine carbon template.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...